๊ด€๋ฆฌ ๋ฉ”๋‰ด

hyerong's Dev_world๐ŸŽก

[pytorch zero to all ๊ฐ•์˜ ๋‚ด์šฉ ์ •๋ฆฌ] 2๊ฐ• Linear Model - ์„ ํ˜• ๋ชจ๋ธ ๋ณธ๋ฌธ

์นดํ…Œ๊ณ ๋ฆฌ ์—†์Œ

[pytorch zero to all ๊ฐ•์˜ ๋‚ด์šฉ ์ •๋ฆฌ] 2๊ฐ• Linear Model - ์„ ํ˜• ๋ชจ๋ธ

hyerong 2024. 1. 7. 17:49

 

์บก์Šคํ†ค ์ฃผ์ œ๊ฐ€ LLM์„ ์ด์šฉํ•œ ๊ฒ€์ƒ‰ ์—”์ง„ ์ œ์ž‘์œผ๋กœ ์ขํ˜€์ง€๋ฉด์„œ ํŒŒ์ดํ† ์น˜ ์Šคํ„ฐ๋””๋ฅผ ๊ฒจ์šธ๋ฐฉํ•™๋™์•ˆ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค. 

๊ต์ˆ˜๋‹˜๊ป˜์„œ ๊ณต์œ ํ•ด์ฃผ์‹  pytorch zero to all ๊ฐ•์˜๋ฅผ ์ˆ˜๊ฐ•ํ•˜๋ฉด์„œ ์ •๋ฆฌํ•œ ๋‚ด์šฉ์„ ๊ณต์œ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. 

์ˆ˜ํ•™์ ์ธ ๋‚ด์šฉ๊ณผ ์›๋ฆฌ์— ๋Œ€ํ•ด์„œ๋Š” ๊ฐ„๋‹จํžˆ ์ •๋ฆฌํ•˜๊ณ  ๊ฐ•์˜์˜ ์ˆฒ์„ ๋ณด๋Š” ์ฃผ์ œ์œ„์ฃผ๋กœ ์ •๋ฆฌํ•œ ๋ถ€๋ถ„์ด๋‹ˆ ์ €์ฒ˜๋Ÿผ ํŒŒ์ดํ† ์น˜์— ์ œ๋กœ๋ฒ ์ด์Šค์˜€๋˜ ๋ถ„๋“ค๊ป˜์„œ๋Š” ํ•œ๋ฒˆ ์ฝ๊ณ  ํŒŒ์ดํ† ์น˜ ์Šคํ„ฐ๋””๋ฅผ ์‹œ์ž‘ํ•˜์‹œ๋Š”๊ฒŒ ๋„์›€์ด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. 

13๊ฐ•๊นŒ์ง€ ๋‚ด์šฉ์„ ์ „๋ถ€ ์˜ฌ๋ฆฌ๊ณ  ์ดํ›„ ์ถ”๊ฐ€์ ์ธ ์Šคํ„ฐ๋””๋ฅผ ์ง„ํ–‰ํ• ๋•Œ๋งˆ๋‹ค ์‹œ๊ฐ„์„ ๋‚ด์–ด ๊ณต๋ถ€ ๋‚ด์šฉ์„ ์ •๋ฆฌํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. 


๊ฐ•์˜ ๋ชฉํ‘œ : ํŒŒ์ดํ† ์น˜์˜ ์„ ํ˜• ๋ชจ๋ธ ๊ฐœ๋…์„ ์ด์•ผ๊ธฐํ•˜๊ณ  ์ง€๋„ ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ์„ ํ˜• ๋ชจ๋ธ์ด ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ๋ชจ๋ธํ•™์Šต ๋ฐ ํ‰๊ฐ€ ๊ณผ์ •์„ ์„ค๋ช…ํ•œ๋‹ค. 
๋˜ํ•œ ์†์‹ค ๊ณ„์‚ฐ๊ณผ ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์†์‹ค์„ ์ตœ์†Œํ™” ํ•ด๋ณธ๋‹ค. 
๋˜ํ•œ ํŒŒ์ด์ฌ์—์„œ ์„ ํ˜• ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๋Š” ์˜ˆ์‹œ๋ฅผ ๋ณด๋ฉฐ ๋ชจ๋ธ์˜ ์ž๋™ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๊ฐœ๋…์„ ์†Œ๊ฐœํ•œ๋‹ค. 
- [1] ๐Ÿ” Linear models are commonly used in machine learning for predicting outputs based on inputs. They are particularly useful when there is a linear relationship between the variables.
- [2] โž— The loss function, specifically mean square error (MSE), is used to measure the difference between the predicted outputs and the actual outputs. The goal is to minimize this loss to improve the accuracy of the model.
- [3] ๐Ÿ“ˆ Gradient descent is an optimization algorithm that iteratively adjusts the weights of the model to minimize the loss. It helps in automatically finding the best weight values that minimize the MSE.
- [4] ๐Ÿ Python provides a simple and efficient way to implement linear models and compute the loss. By defining the model as a function and using basic mathematical operations, the model can be easily programmed.
- [5] ๐Ÿ“‰ Graphical visualization of the loss function helps in understanding the relationship between weight values and the corresponding loss. This visualization can guide the optimization process and identify the best weight value.
- [6] ๐Ÿ”„ The process of finding the best weight value is crucial for machine learning models, especially when there are multiple parameters. Gradient descent offers an automated way to optimize the model and minimize the loss.
- [7] ๐Ÿ“š Exercises and hands-on experience are essential for gaining a deeper understanding of linear models, loss calculation, and optimization techniques. Practicing with different datasets and computing the cost graph can enhance learning and problem-solving skills.

- [1] ๐Ÿ” ์„ ํ˜• ๋ชจ๋ธ์€ ์ž…๋ ฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ถœ๋ ฅ์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ๊ณ„ ํ•™์Šต์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ๋ณ€์ˆ˜ ์‚ฌ์ด์— ์„ ํ˜• ๊ด€๊ณ„๊ฐ€ ์žˆ์„๋•Œ ํŠนํžˆ๋‚˜ ์œ ์šฉํ•˜๋‹ค. 

- [2] โž—์†์‹ค ํ•จ์ˆ˜, ํŠนํžˆ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ(MSE)๋Š” ์˜ˆ์ธก ์ถœ๋ ฅ๊ณผ ์‹ค์ œ ์ถœ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ์ธก์ •ํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๋ชฉํ‘œ๋Š” ์ด๋Ÿฌํ•œ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ๊ฒƒ์ด๋‹ค. 

- [3] ๐Ÿ“ˆ gradient descent-๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์€ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ์กฐ์ •ํ•˜๋Š” ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. ์ด๋Š” MSE๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์ตœ์ƒ์˜ ์ค‘๋Ÿ‰๊ฐ’์„ ์ž๋™์œผ๋กœ ์ฐพ๋Š”๋ฐ ๋„์›€์ด ๋œ๋‹ค. 

- [4] ๐Ÿ ํŒŒ์ด์ฌ์€ ์„ ํ˜• ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ณ  ์†์‹ค์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฐ„๋‹จํ•˜๊ณ  ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ๋ชจ๋ธ์„ ํ•จ์ˆ˜๋กœ ์ •์˜ํ•˜๊ณ  ๊ธฐ๋ณธ์ ์ธ ์ˆ˜ํ•™์  ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•˜๋ฉด ๋ชจ๋ธ์„ ์‰ฝ๊ฒŒ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ•  ์ˆ˜ ์žˆ๋‹ค. 

- [5] ๐Ÿ“‰ ์†์‹ค ํ•จ์ˆ˜์˜ ๊ทธ๋ž˜ํ”ฝ ์‹œ๊ฐํ™”๋Š” ๊ฐ€์ค‘์น˜ ๊ฐ’๊ณผ ํ•ด๋‹น ์†์‹ค ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ดํ•ดํ•˜๋Š”๋ฐ ๋„์›€์ด ๋œ๋‹ค. ์ด ์‹œ๊ฐํ™”๋Š” ์ตœ์ ํ™” ํ”„๋กœ์„ธ์Šค๋ฅผ ์•ˆ๋‚ดํ•˜๊ณ  ์ตœ์ƒ์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค. 

- [6] ๐Ÿ”„ ์ตœ์ ์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ์ฐพ๋Š” ํ”„๋กœ์„ธ์Šค๋Š” ํŠนํžˆ ์—ฌ๋Ÿฌ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ ๊ธฐ๊ณ„ ํ•™์Šต ๋ชจ๋ธ์— ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. 
๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•์€ ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•˜๊ณ  ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋Š” ์ž๋™ํ™”๋œ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. 


- [7] ๐Ÿ“š ์„ ํ˜• ๋ชจ๋ธ, ์†์‹ค ๊ณ„์‚ฐ ๋ฐ ์ตœ์ ํ™” ๊ธฐ์ˆ ์„ ๋” ๊นŠ์ด ์ดํ•ดํ•˜๋ ค๋ฉด ์—ฐ์Šต๊ณผ ์‹ค์Šต ๊ฒฝํ—˜์ด ํ•„์ˆ˜์ . ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์—ฐ์Šตํ•˜๊ณ  ๋น„์šฉ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ณ„์‚ฐํ•˜๋ฉฐ ํ•™์Šต ๋ฐ ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ธฐ์ˆ ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ. 

https://youtu.be/l-Fe9Ekxxj4?feature=shared